

RESOURCES FOR "SSC-I BIOLOGY" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1. Extended Response Questions (ERQs)

HOW TO ATTEMPT ERQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION C (LONG ANSWER QUESTIONS)

1. What is mitosis? Explain different stages of mitosis

S.NO	ERQ	ANSWER	CL	DL
1.	What is mitosis? Explain different	In this type of cell division a parent cell	K/R-U	Е
	stages of mitosis	divides into two daughter cells in a way that		
		the number of chromosomes in the		
		daughter cells remains the same as in the		
		parent cell. Although mitosis is a		
		continuous process, but for the study point		
		of view we can divide it into two phases; (a)		
		Karyokinesis - nuclear division		
		(b) Cytokinesis - cytoplasmic division.		
		(a) The karyokinesis can be divided further		
		for convenience into four phases which are		
		Prophase, Metaphase, Anaphase and		
		Telophase. Let us study mitosis in an animal		
		cell.		
		MITOSIS (i) Prophase: During early		
		prophase chromatin material condenses		
		and become visible as thick coiled, thread		
		like structures called chromosomes. Each		
		chromosome at this stage is already double,		
		consists of two chromatids. The chromatids		
		are attached to each other at centromere.		
		The nuclear membrane gradually		
		disappears and at the same time		
		centrosome divides to form two centrioles,		
		each moves towards the opposite pole of		
		the animal cell and forms the spindle fibres.		
		The centrioles are absent in plant cells.		
		(ii) Metaphase: During this phase each		
		chromosome arranges itself on the equator		
		of the spindle. Each chromosome is		
		attached to separate spindle fibre by its		
		centromere.		
		(iii) Anaphase: In this phase the spindle		
		fibre contract, centromere of a		
		chromosome divides and the chromatides		
		of each chromosome separates from each		
		other and begin to move towards the other		
		poles. In this way one set of the chromatids		
		(each chromatid is now an independent		
		chromosome) move towards one pole while		
		the other set towards the other pole.		
		(iv) Telophase: This is a stage when the		
		chromatids (now called chromosomes)		
		reach at the respective poles and their		
		movement ceases. Each pole receives the		
		same number of chromosomes as were		
		present in the parent cell. The nuclear		
		membrane is reformed around each set of		
		chromosomes. In this way two daughter nuclei formed in each cell.		

K/R-U	

		(taken in) without their being degraded or decomposed. After intake, such food is digested by enzymes produced within the organism. Digested food is absorbed into the body and the undigested product is egested (expelled out) from the body. This kind of nutrition is found mainly in non- parasitic animals-simple ones like Amoeba and complex ones like human beings.		
3.	Explain the structure of human heart with the help of labeled diagram	Heart: Heart is the major organ of Circulatory system. It is a muscular pump which keeps the blood circulating through out the body. It is located in the thorax slightly at the left side. It is enclosed in a fibrous bag like protective cover called Pericardium. It is conical in shape externally. The space between pericardium and heart is pericardial cavity which is filled with a fluid called pericardial fluid. This fluid reduces friction and Pericardium protects the heart, prevent it from over extension. Internally, it consists of four chambers, the upper two are thin walled called atria (sing: artrium) the lower two are thick walled called ventricles. Atria are completely separated from each other by a septum called interatrial septum. Similarly, the two ventricles are also separated from each other by a muscular partition called inter- ventricle septum. Each atrium is connected with its ventricle by an auriculo-ventricular aperture. Theright atrium and right ventricle are connected by Tricuspid Valve. Similarly, left atrium and left ventricle are connected by bicuspid valve. These valves prevent the backward □ow of blood from the ventricles to the atria. Two main blood vessels are arising from ventricles to carry blood from heart to all parts of the body.	K/R-U	М

		Superior Pulmonary Pulmonary Pulmonary Pulmonary Nitral Ticuspid Right Ticuspid Right Ticuspid Pericardium		
4.	What are enzymes? Mention factors affecting enzymatic activity	The high amount of activation energy cannot be provided by organism itself therefore they require some facilitators to reduce this activation energy. These facilitators are special molecules made up of mostly protein called enzymes (En=inside, zyme = yeast). The name was coined due to observation when yeast was introduced in fruit sap which converted it into alcohol. Now the enzyme are defined as the biocatalyst which facilitate chemical reaction by lowering activation energy Factors affecting the activity of an enzymes: In nature, organisms adjust the conditions of their enzymes to produce an optimum rate of reaction, where necessary, or they may have enzymes which are adopted to function well in extreme conditions where they live. Substrate Concentration: It has been shown experimentally that if the amount of the enzyme is kept constant and the substrate concentration is then gradually increased, the reaction velocity will increase until it reaches a maximum after which further increase in the substrate concentration produces no significant change in the reaction rate In other words, the enzyme molecules are saturated with substrate. The excess substrate already bound to the enzymes has reacted and been released (or been released without reacting) Temperature: The protien nature of the enzymes makes them extremely sensitive	K/R-U	Ε

	within a narrow range of temperatures compared to ordinary chemical reactions. Enzymes catalyse by randomly colliding with substrate molecules, increasing temperature and increases collision which also increases the rate of reactionforming more product. However, increasing temperature also increases the vibrations and structure of enzymes is lost i.e denature enzyme. These changes decreases the rate of enzyme action or it may seized completely. In summary, as temperature increases, initially the rate of reaction will increase, because of increased kinetic energy. However, the effect of bond breaking will become greater and greater, and the rate of reaction will begin to decreaseEnzymes are also sensitive to pH due to their protien nature. All enzymes work at their maximum rate at narrow range of pH. The point where the enzyme is most active is known as optimum pH. For example, pepsin works at a low pH i.e. it is highly acidic, while trypsin works at a high pH i.e. it is basic. Most enzymes work at neutral pH. Small changes in pH above or below the optimum do not cause a permanent change to the enzyme, since the bonds can be reformed. However, extreme changes in pH can cause enzyme s t o denature and permanently lose their function		
5. Write a detailed note on Animal tissues.	Animal tissues: Humans and other large multicellular animals are made up of four basic types tissue: epithelial tissue, connective tissue, muscular tissue and nervous tissue. 1. Epithelial tissue: Epithelial tissue covers the surface of the body, lines the spaces inside the body and forms glands. For instance, the outer layer of your skin is an epithelial tissue and the lining of small intestine are made up of epithelial tissues. Epithelial cells are polarized, means that they have a top and a bottom side. Simple squamous epithelium is found in the alveoli of lungs, and its structure is important for the exchange of gases between the blood and lungs. Simple cuboidal epithelia line the lumen of collecting ducts in the kidney and are present in the thyroid gland around the follicles that secrete thyroid hormones. Simple columnar epithelia are found in the	K/R-U	Μ

digestive tract. Stratified epithelia consist of more than one layer of cells and only one layer is in direct contact with the basement membrane. Stratified squamous epithelia are found in skin, with many dead, keratinized cells providing protection against water and nutrient loss. Stratified cuboidal epithelia are found surrounding the ducts of many glands, including mammary glands in the breast and salivary glands in the mouth. Stratified columnar epithelia are rare, found predominantly in some organs of the reproductive system. Transitional epithelia are a special subset of stratified epithelia. They are exclusively found in the excretory system.

CONNECTIVE TISSUE:

This tissue which connects or bind the different types of cells called connective tissues. They also bind other tissues of the body with each other. Connective tissue holds structures in the body together, such as tendons. Cartilage is a type of supporting connective tissue. It is a dense connective tissue. Cartilage has limited ground substance and can range from semisolid to a flexible matrix. Bone is another type of supporting connective tissue. Bone can either be compact (dense) or spongy (cancellous), and contains the osteoblasts or osteocytes cells. Adipose is another type of supporting connective tissue that provides cushions and stores excess energy and fat. Blood referred to as connective tissue. It is a type of fluid connective tissue. Muscle tissues:

Muscle tissue contains the cells that are responsible for the contraction of muscles. There are three types of muscular tissues i.e. cardiac, smooth, and skeletal. Skeletal muscle, which is also called striated (striped) muscle, is what we refer to as muscle in everyday life. Skeletal muscle is attached to bones by tendons. For instance, the muscles in your legs and your arms are skeletal muscle. Cardiac muscle is found only in the walls of the heart. Like skeletal muscle, cardiac muscle is striated, or striped. But it's not under voluntary control, so thankfully! you don't need to think about making your heart beat. Smooth muscle is found in the walls of blood vessels, as well as in the walls of the digestive tract, the

		uterus, the urinary bladder, and various other internal structures. Smooth muscle is un-striped, (unstriated), it is involuntary, not under conscious control. That means		
		you don't have to think about moving food through your digestive tract!		
		Nervous tissues:		
		Nervous tissue is composed of neurons,		
		which transmit information to other cells.		
		Nervous tissue is found in the brain, spinal		
		cord, and nerves. It is responsible for		
		coordinating and controlling many body		
		activities. It stimulates muscle contraction,		
		creates an awareness of the environment,		
		and plays a major role in emotions,		
		memory, and reasoning. To do all these		
		things, cells in nervous tissue need to be able to communicate with each other by		
		way of electrical nerve impulses.		
6.	What is transpiration? Explain	TRANSPIRATION:	K/R-U	Μ
0.	the importance of transpiration.	Plants absorb water continuously from soil.	11/11/0	111
		Some of its quantity utilized in		
		photosynthesis and other metabolic		
		functions while the rest is retained in cell to		
		maintain turgidity of cell. Some water is		
		removed in the form of vapours. This loss of		
		internal water of plant in the form of		
		vapours from aerial part of plant is called		
		transpiration. Transpiration mainly takes		
		place through special pores guarded by		
		specialized guard cells called stomata (sing:		
		stoma).		
		Significance of transpiration: Transpiration		
		maintains low concentration of water and		
		high concentration of solutes in cell i.e. high		
		solute potential. The high solute potential of leaf cells attract more water and draw		
		more water from xylem. This continuous		
		withdrawl of water from xylem develops		
		deficit of water in xylem which develops a		
		pull or tension called transpiration pull. As a		
		result of this transpiration pull and water		
		attraction for other water molecule i.e		
		cohesion of water, water is pulled upward		
		in the xylem vessels through a continuous		
		column called transpiration stream, which		
		helps in ascent of sap. Ÿ By active		
		transpiration, transpiration pull is created		
		which helps in the ascent of sap. 180 The		
		experiment shows that most of the water		
		vapour is lost from the surface where		
		stomata are present. Surface area of leaf is		
		also an important factor for the rate of		
		transpiration, because the larger size leaves		

 ·
increases the rate of transpiration. The
desert plants require to save their water so
they have smaller size leaves or their leaves
become spines to reduce number of
stomata as well as rate of transpiration.
Stomata and its opening/closing
mechanism: Stomata are the pores usually
found in the leaf epidermis surrounded by
two kidney shaped guard cells, these cells
contain chloroplast while other epidermal
cells do not. The guard cells control the
opening and closing of stomata. The inner
wall of guard cells is thick and inelastic
whereas the outer wall is thin, elastic and
permeable. The changes in the turgidity of guard cells controls the opening and closing
of stomata. Stomata open when the guard
cell become turgid and close when the
guard cells become flacid. The turgidity of
guard cell is regulated by concentration of
solutes present in it which mainly depends
upon the rate of photosynthesis. Opening
and closing of stomata is one of the
important factor to control rate of
transpiration. The stomata remain open
during the sunny day, as a result rate of
transpiration increases. But at night they
are closed, hence transpiration also stops.
Fig: 9.5 Diagram showing opening and
closing of stoma Guard cells Guard cells
Nucleus vacuole vacuole Chloroplast
Chloroplast Epidermal cell Inner thick wall
Outer thin wall Closed Stoma Opened
Stoma Ÿ Transpiration also increases the
rate of absorption because the loss at one
end increases demand on other end. Ÿ
Transpiration gets rid of the excess amount
of water from plant. Ÿ Transpiration helps
in mantaining the temperature of plant for
its metabolism and survival because
evaporation causes cooling. Ÿ Opening and
closing of stomata is also regulated by
transpiration, which indirectly influences
upon the rate of photosynthesis and
respiration. Every year number of plants die
in hot summer day due to excessive loss of
water from aerial parts which results in
wilting and dehydration and ultimately may
lead to death of plant in extreme
conditions. Transpiration is considered as
necessary element for plant due to its
advantages which are discussed above but
on the other hand, it is also considered as
an evil for plant because million of plants

		die every year due to excessive transpiration.	
7.	What is photosynthesis? Write a detailed note on Light reaction.	Photosynthesis is the fundamental process in which basic organic molecules and O are produced for all bio-molecules and living organisms.This process in carried out by chlorophyll containing organisms like plants, algae, some protozons and some bacteria. Word photo means light and synthesis means to prepare. Plants utilize simple inorganic molecules carbon dioxide (CO) and water (H O) which react by using light energy in the presence of pigments like Chlorophyll to form glucose and oxygen.	
		Light Reaction or Light DependentReactionThe term light reaction or light dependentreaction is used due to the reason thatduring this phase of photosynthesis lightenergy is captured and converted intochemical energy. Some of the light isutilized to split water into oxygen and Hwith e- (electrons), this splitting of water iscalled Photolysis. Oxygen which is producedduring photolysis is released in theenvironment where as H + together withCO are used in building Glucose. 2 Inchloroplast, different pigments absorb lightof different wave lengths. Among themchlorophyll is the main light capturingmolecules in thylakoid membrane whichabsorbs violet, blue and red light butreflects green therefore it appears green. Inthe thylakoid membrane other pigmentsand electron carrier molecules form highlyorganized assemblies in a series calledphotosystems. Each thylakoid containsthousands of copies of two different kind ofphotosystems. called photosystems I and II.Each consists of two major parts, a lightharvesting complex and an electrontransport system.The conversion of light energy takes placeswhen the chlorophyll of reaction centerreceives energy. One of the electrons fromchlorophyll "a" molecule leaves and jumpover the electron transport system. Thisenergized electron moves from one carrierto next. The electron releases energy, whenit comes down, this energy drives reactions <td></td>	

		i) ATP (Adenosine Triphosphate) ii) NADPH (Reduced Nicotinamide Adenosine		
		Dinucleotide Phosphate) 2 ADP is the		
		compound which is already present in cell. It combines with phosphate by using energy		
		of photon released from when moving		
		through e - carriers in photosynthesis.		
		$ADP + P \rightarrow ATP$		
		NADP also present in chloroplast is reduced		
		into NADPH by 2 accepting Hydrogen ions		
		(H), released from splitting of water. NADP + 2 H + 2e → NADPH2		
		ATP and NADPH both are energy rich		
		compounds which provide 2 energy,		
		Hydrogen (H) and e for the conversion of		
		atmospheric CO into 2 + - carbohydrates in		
		chloroplast during light independent Phase		
-		of photosynthesis	T 1/25	-
8.	What is biological method? Write	BIOLOGICAL METHOD As you know that biology is the branch of science	U/R	Ε
	in detail the steps involved in the biological method	concerned with the study of living things, or		
		organisms. The system of advancing		
		knowledge by formulating a question,		
		collecting data about it through observation		
		and experiment, and testing a hypothetical answer about living things is called		
		biological method.		
		Observation: The first step is to identify the		
		reason of the problem followed by the		
		formulation of a question about what has		
		been observed. The solution of biological problem starts with observation. Your		
		observation can be on anything from plant		
		movement to animal behavior. An		
		observation is a statement of knowledge		
		gained through the senses (qualitative) or		
		through the use of scientific equipment (quantitative).		
		Hypothesis: Hypothesis is a key component		
		of the scientific process. It is defined as "the		
		intelligent guess made by a scientist in the		
		form of statement". It is important to note that a hypothesis must be testable. That		
		means, you should be able to test your		
		hypothesis through experimentation. Your		
		hypothesis must either be supported or		
		falsified by your experiment		
		Reasoning: Biologists collect information about the problem and formulate the		
		hypothesis by using a reasoning process i.e.		
		'inductive reasoning and deductive		
		reasoning'.		
		Experiment: Once a problem has been		
		observed and a hypothesis is suggested, the next step in the scienti \Box c method is to		
				1
		design an experiment based on reasoning.		

	scientist to identify the real cause of a	
	problem based on inductive and or	
	deductive reasoning. A key assumption is	
	that the experiment will be repeated many	
	times by other scientists.	
	Result The results are where you report	
	what happened in the experiment. That	
	includes detailing all observations and data	
	made during your experiment. Result	
	verifies the hypothesis. In the case of	
	malaria, it was found that all the malaria	
	patients (experimental group) had	
	Plasmodium in their blood whereas the	
	blood samples of healthy persons (control	
	group) were free from Plasmodium.	
	Conclusion: The final step of the scientific	
	method is developing conclusion. This is	ļ
	where all the results from the experiment are	ļ
	analyzed and a determination is reached	
	about the hypothesis. If your hypothesis was	
	supported, its great. If not, repeat the	
	experiment or think of other ways to	
	improve your procedure.	
	Theory: Scientists use the word "theory" in	
	a very different way than nonscientists.	
	When many people say "I have a theory",	
	they really mean "I have a guess". Scientific	
	theories, on the other hand, are well-tested	
	and highly reliable scientific explanations of	
	natural phenomena. They unify many	
	repeated observations and data collected	
	from lots of experiments.	
· · · · · · · · · · · · · · · · · · ·	·	
	For example: Theory of Evolution. Law	
	and principle: A scientific law is a uniform	
	or constant fact of nature, it is virtually an	
	irrefutable theory. Biology is short in laws	
	due to puzzling nature of life.	